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Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were

employed to optimize the structures of various neutral-framework compounds with zeolite topologies.

The calculations used the PBE functional for solids (PBEsol) in combination with two differ-

ent dispersion correction schemes, the D2 correction devised by Grimme and the TS correction

of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized

structures against experimental crystal structure data was carried out, considering a total of 14 struc-

tures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2

and PBEsol-TS showed an excellent performance, improving significantly over the best-performing

approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters

and bond lengths was assessed for those zeotypes where the available experimental data permitted

such an analysis. In most instances, the agreement between DFT and experiment improved when

the experimental data were corrected for the effects of thermal motion and when low-temperature

structure data rather than room-temperature structure data were used as a reference. In the second

part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was car-

ried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional,

with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-

D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers

accurate structures and energetics of neutral-framework zeotypes. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4981528]

I. INTRODUCTION

The benchmarking of density-functional theory (DFT)

calculations, i.e., the critical comparison of DFT results against

reference data from high-level quantum-chemical calculations

or experiment, has become a very active field of research. Com-

parative benchmarking studies that assess the performance of

different exchange-correlation functionals and/or dispersion

correction schemes have been published for organic molecules

and their complexes,1–5 molecular crystals,6,7 and inorganic

solids.8–15 While it is beyond the scope of this work to pro-

vide a complete overview of previous benchmarking efforts,

the recent work of Tran et al. can serve as an instructive

example:15 These authors compared different functionals from

rungs 1 to 4 of “Jacob’s Ladder” of DFT and also considered

the inclusion of a pairwise dispersion correction. On “Jacob’s

Ladder,”16 the local-density approximation (LDA) constitutes

the first rung, semilocal functionals that include a dependence

on the density gradient are on the second rung (generalized

gradient approximation—GGA), meta-GGA functionals form

the third rung, and hybrid functionals containing a fraction

of exact exchange correspond to the fourth rung. Using a

a)Electronic mail: michael.fischer@uni-bremen.de

portfolio of 40 different functionals without dispersion cor-

rection, plus 20 dispersion-corrected variants, Tran et al.

predicted the lattice parameters, bulk moduli, and cohesive

energies of 44 strongly bound solids (elements and binary

crystals) and 5 weakly bound systems (rare gas crystals and

layered solids). They found that some GGA-type function-

als that were specifically designed for solids, such as the

PBE functional for solids (PBEsol)17 and Wu-Cohen (WC)18

functionals, deliver an accuracy that is on par with the best-

performing meta-GGA and hybrid functionals for the strongly

bound solids. They also observed that the inclusion of a dis-

persion correction can improve the performance of those func-

tionals that have a systematic tendency to overestimate the

lattice parameters in their uncorrected form, e.g., for the PBE

functional.19 Finally, only the dispersion-corrected approaches

were found to give a correct description of the weakly bound

systems.

Motivated by the widespread interest in zeolites and struc-

turally related materials (zeotypes), which find applications

in gas separation, catalysis, and ion exchange, some previ-

ous studies have assessed the performance of DFT in repro-

ducing the structure and/or relative stability (difference in

lattice energy with respect to α-quartz, the thermodynam-

ically stable form at ambient conditions) of all-silica zeo-

lites. A systematic tendency to underestimate the relative
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energies when using GGA or hybrid functionals without a

dispersion correction was found by different groups.20–22 A

recent study by Román-Román and Zicovich-Wilson showed

that a combination of the hybrid PBE0 functional with a

Grimme-type D2 dispersion correction gives a fairly good pre-

diction of the relative energies.23 However, these authors also

observed a systematic overestimation of the molar volume by

the PBE0-D2 approach (i.e., the DFT-optimized unit cells were

systematically too large). We previously studied the perfor-

mance of different GGA-type functionals with and without dis-

persion correction for neutral-framework zeotypes with SiO2

and AlPO4 compositions.24 In the context of that study, we

compiled a set of 14 reference structures for which high-quality

experimental crystal structure data are available (8 all-silica

zeolites, 4 porous aluminophosphates (AlPOs), and 2 dense

phases: α-quartz and α-berlinite). We then performed DFT

structure optimizations, employing three different exchange-

correlation functionals without dispersion correction (PBE,

WC, and PBEsol)17–19 and two dispersion-corrected variants

of PBE, the PBE-D2 approach devised by Grimme25 and the

PBE-Tkatchenko and Scheffler (TS) approach developed by

Tkatchenko and Scheffler.26 All functionals without disper-

sion correction showed a systematic tendency to overestimate

the lattice parameters, with a mean of signed errors (MSE, see

below) between +0.07 Å and +0.15 Å, and RMSE (root mean

square of relative error) values in the range of 0.7%–1.4%. The

dispersion-corrected approaches, particularly PBE-TS, gave

rather accurate predictions, with MSE and RMSE values in

the range +0.05 Å and 0.5%, respectively. On the other hand,

WC and PBEsol delivered T–O bond lengths (T = tetrahedral

atoms: Si, Al, and P) that were in closer agreement with

experiment than the PBE-based approaches. Regarding the

T–O–T angles, neither approach performed fully satisfacto-

rily, with systematic tendencies to overestimate (PBE, WC, and

PBEsol) or underestimate (PBE-D2 and PBE-TS) the angles.

Furthermore, the dispersion-corrected functionals were found

to exaggerate the distortion of two additional zeolites with

distorted six-ring windows (all-silica SOD and AST). This

observation was explained as probably being the result of

the overestimation of dispersion interactions between atoms

that are close together but not directly bonded to each other.

Finally, the relative stabilities with respect to α-quartz were

assessed for four all-silica zeolites for which experimental

enthalpies of transition are available. Here, PBE-TS overes-

timated the energy differences, whereas the relative energies

predicted by PBE-D2 were surprisingly accurate. Qualitatively

identical findings were reported in a benchmarking study that

addressed a larger variety of dense SiO2 polymorphs, but only

two zeolites.27 Interestingly, these authors found that the pair-

wise D2 and TS dispersion correction schemes outperformed

more elaborate non-local van der Waals functionals.

It is the aim of the present work to improve upon our

previous study24 in various aspects: First, we consider a com-

bination of the PBEsol functional with two different pairwise

dispersion corrections. This is primarily motivated by the supe-

rior performance of PBEsol in reproducing experimental T–O

bond lengths. Second, as we pointed out earlier, the com-

parison of DFT and experimental structure data is hampered

by the fact that DFT neglects any thermal motion, whereas

most experimental measurements were performed at room

temperature (RT). In the current work, we include a semi-

quantitative assessment of the effect of temperature on the

structural parameters in order to assess whether the agreement

of DFT and experiment improves or worsens if temperature

effects are accounted for. Finally, we also study the relative

stability of all-silica zeolites in much more depth, perform-

ing calculations for all frameworks for which experimental

enthalpies of transition are available.

II. COMPUTATIONAL DETAILS

A. Reference data

In the first part of the study, the performance of the

dispersion-corrected variants of PBEsol was assessed in detail

for the previously mentioned set of reference structures of

14 SiO2 and AlPO4 frameworks. This set consists of two

dense phases (α-quartz and α-berlinite), eight all-silica zeo-

lites (CHA, FAU, FER, IFR, LTA, RTE, SAS, and TON

frameworks, the framework type codes FTC follow the IZA

database28), and four aluminophosphates (AEI, AEN, CHA,

and ERI frameworks). The members of this set were chosen

on the basis of several considerations, which are explained

in detail in our previous work.24 Among the most important

requirements regarding the experimental crystal structure data

are (1) (practically) ideal stoichiometry and the absence of

structural disorder, (2) the availability of structure data for a

calcined system, obtained at room temperature (or below RT),

(3) no unrealistic T–O bond distances or O–T–O angles devi-

ating strongly from the ideal tetrahedral angle, and (4) the

absence of T–O–T angles of 180◦. As in previous work, two

additional all-silica zeolites with strongly distorted six-ring

windows (SOD29 and AST30) were also considered. As the

errors in lattice parameters for these two systems are system-

atically larger, they were not included in the calculation of the

overall errors but will be discussed separately.

In our previous work, relatively little emphasis was placed

on the prediction of relative stability of all-silica zeolites

with respect to α-quartz, the thermodynamically stable SiO2

polymorph at ambient conditions.24 It was observed, how-

ever, that the inclusion of a dispersion correction is abso-

lutely necessary to arrive at reasonable relative energies, in

line with previous findings by other groups.23,27 A review

article covering calorimetric studies reports enthalpies of tran-

sition ∆Htrans (with respect to α-quartz) for a total of 17 all-

silica (or high-silica) zeolites,31 with values of∆Htrans ranging

from 6.6 to 14.4 kJ mol �1 and typical uncertainties on the order

of 1 kJ mol �1. Of these 17 zeolites, four are members of our

set of reference structures (CHA, FAU, FER, and IFR) and a

fifth one is AST, one of the structures with distorted six-rings.

Additional calculations with the PBEsol-D2 and PBEsol-TS

functionals were performed for 11 of the remaining 12 sys-

tems: AFI, BEA, CFI, ISV, ITE, MEI, MEL, MFI, MTW,

MWW, and STT. Only the EMT zeolite was omitted, since

a relatively high content of framework Al was reported in the

original study.32 Furthermore, α-cristobalite was included as

an additional non-porous silica polymorph. For a given all-

silica system, the total DFT energy of α-quartz (per SiO2 unit)

was subtracted from the total DFT energy of the system in
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question (per SiO2 unit) to give an energy difference (= rela-

tive energy) ∆EDFT . These relative energies were then directly

compared to experimental enthalpies of transition ∆Htrans, in

keeping with previous work.23 Additional calculations of the

vibrational properties for a few zeolites showed that this sim-

plification is justified, as the correction for zero-point vibra-

tion and temperature effects for T = 298 K amounts to less

than 1 kJ mol�1 per formula unit of SiO2.

Figure 1 lists all members of the two reference sets used

for structures and energetics, respectively, and visualizes the

overlap between them. In the remainder of this work, all-silica

zeolites are designated by their framework type code (adding

the name or acronym where useful), whereas the framework

type code is supplemented by the subscript “AlPO” for alu-

minophosphate zeotypes, e.g., AENAlPO. The references from

which the experimental crystal structure data were taken are

compiled in Tables I and II.

B. Setup of DFT calculations

All DFT calculations were carried out using the CASTEP

code (version 7.01), which uses plane waves and pseudopo-

tentials.61 The calculations used on-the-fly generated ultrasoft

pseudopotentials and an energy cutoff of 800 eV, which was

found to give very well-converged total energies. All free struc-

tural parameters were optimized using a Broyden-Fletcher–

Goldfarb-Shanno (BFGS) optimization algorithm. For most

systems (except those with the largest unit cells), calculations

with k-meshes of different size were compared in order to

ensure the convergence of the results with respect to the num-

ber of k-points. Details on the k-meshes used, the convergence

criteria employed in the optimizations, and sample CASTEP

input files are supplied in the supplementary material.

C. The PBEsol-D2 and PBEsol-TS functionals

The PBEsol exchange-correlation functional was devel-

oped in 2008 by Perdew and co-workers.17 PBEsol is a

GGA-type functional that is based on the PBE functional but

provides a better description of solids as it restores the density-

gradient expansion over a wide range of density gradients.

PBEsol was found to deliver accurate structural parameters

(and, where investigated, elastic properties) for different inor-

ganic solids, among them elements and binary crystals,9,14,15

FIG. 1. Overview of reference sets used for the benchmarking against crystal

structure data (left circle) and against enthalpies of transition (right circle).

TABLE I. Systems used in benchmarking against crystal structure data.

Framework type Name or acronym References

SiO2 systems

qtz α-quartz 33

CHA SiO2-chabazite 34

FAU Dealuminated zeolite Y 35

FER SiO2-ferrierite 36

IFR ITQ-4 37

LTA ITQ-29 38

RTE RUB-3 39

SAS SSZ-73 40

TON ZSM-22 41

AlPO4 systems

qtz α-berlinite 42

AEN AlPO-53(B) 43

CHA AlPO-34 44

ERI AlPO-17 45

EZT EMM-3 46

various minerals such as forsterite, pyrope, the Al2SiO5 poly-

morphs,10–12 and sheet silicates,13 while performing rather

poorly for alkaline-earth metals.9,15

The pairwise D2 dispersion correction was proposed in

2006 by Grimme.25 In this scheme, the total energy is given as

Etotal = Eel,DFT + Edisp. (1)

Here, Eel,DFT is the electronic energy obtained from a DFT

calculation using a given exchange-correlation functional and

Edisp is the empirical dispersion energy obtained as

Edisp = −s6

Nat−1
∑

i=1

Nat
∑

j=i+1

C6,ij

r6
ij

fdmp(rij). (2)

In this equation, rij is the distance between a given pair of

atoms, C6,ij is the dispersion coefficient for this pair of atoms,

calculated using the geometric mean of atomic C6 coefficients,

s6 is a global scaling factor, and f damp is a damping function

TABLE II. Systems used in benchmarking against enthalpies of transition.

Framework type Name or acronym References

qtz α-quartz 33

dia α-cristobalite 47

AFI SSZ-24 48 and 49

AST Octadecasil 30

BEA Beta 50 and 51

CFI CIT-5 52

CHA SiO2-chabazite 34

FAU Dealuminated zeolite Y 35

FER SiO2-ferrierite 36

IFR ITQ-4 37

ISV ITQ-7 53

ITE ITQ-3 54

MEI ZSM-18 55

MEL ZSM-11 56

MFI ZSM-5 57

MTW ZSM-12 58

MWW ITQ-1 59

STT SSZ-23 60



174111-4 M. Fischer and R. J. Angel J. Chem. Phys. 146, 174111 (2017)

that goes to zero for small interatomic distances to avoid an

artificial dispersion contribution for atoms that are covalently

bonded to each other. The damping function has the form

fdamp(rij) =
1

1 + exp

[
−d

(

rij

sr (rvdW ,i+rvdW ,j)
− 1

)] . (3)

rvdW are the van der Waals (vdW) radii of the ith and jth

atom, sr is a scaling factor by which the vdW radii are scaled,

and d is a global factor determining the distance dependence of

the correction. In Grimme’s original work, values of sr = 1.10

and d = 20 were recommended (note that the use of sr was not

included in the damping function given in Ref. 25, but all vdW

radii presented in that publication were scaled by 1.10). Based

on quantum-chemical calculations for isolated atoms, Grimme

devised a consistent, generic set of atomic C6 coefficients and

vdW radii for all elements up to Xe.25 The scaling factor s6 in

Equation (2) was optimized for different exchange-correlation

functionals by minimising the error in interaction energies

with respect to reference data for a set of 40 non-covalently

bound complexes. The resulting s6 values range from 0.75 for

PBE to 1.25 for B97-D. It was later argued that a scaling of

the dispersion energy by a constant factor s6 also affects the

dispersion contribution for large interatomic distances, which

should be effectively independent of the exchange-correlation

functional.62

A combination of PBEsol with the Grimme-type D2

dispersion correction scheme was proposed by Csonka and

co-workers, shortly after the publication of the PBEsol func-

tional.63 In contrast to the original implementation of the D2

correction, which uses a common value of sr but different

values of s6 for different exchange-correlation functionals,

these authors fixed s6 to unity, but adjusted sr in order to

reproduce high-level (coupled-cluster singles and doubles plus

perturbative triples (CCSD(T))) interaction energies from the

S22 set of organic dimers.64 The optimized PBEsol-D2 func-

tional, which uses sr = 1.42, was then applied to large organic

molecules, for which it was found to be relatively accurate

given the modest computational expense. Further work on the

Grimme-type dispersion correction method led to the devel-

opment of the D3 scheme, which includes a coordination-

dependent calculation of the dispersion coefficients as well

as a three-body term.65 The D3 correction was first used

in conjunction with the PBEsol functional by Goerigk and

Grimme.1 Due to technical limitations, PBEsol-D3 could not

be tested in the context of the present study. It should be

noted, however, that previous studies that assessed the per-

formance of both the D2 and the D3 schemes (in combi-

nation with PBE) for the calculation of adsorption energies

of small molecules in zeolites66,67 or for the prediction of

relative energies and densities of hybrid zeolitic imidazolate

frameworks (ZIFs)68 reported very similar results for both

approaches.

The TS dispersion correction scheme was introduced

in 2009 by Tkatchenko and Scheffler.26 Like the previously

described D2 scheme, this is also a pairwise dispersion cor-

rection method, in which the dispersion contribution is cal-

culated according to Equation (2). However, unlike the D2

scheme, which uses a fixed set of atomic C6 coefficients, the

TS scheme scales the dispersion coefficients and the vdW radii

by the ratio of the effective volume of an atom in the sys-

tem of interest (molecule and solid) to the volume of the free

atom. The effective volume is determined using a Hirshfeld

partitioning of the DFT electron density.69,70 There is no scal-

ing of the overall dispersion energy, i.e., the factor s6 from

Equation (2) is unity. The damping function corresponds to

Equation (3), where the factor sr can be varied for differ-

ent exchange-correlation functionals (as in the D2 scheme,

d = 20). In the original work of Tkatchenko and Scheffler, a

value of 0.94 was determined for a combination of the TS

scheme with the PBE functional. This value was obtained

by minimising the error of the PBE-TS interaction energies

with respect to reference data from the S22 set of organic

dimers.64 PBE-TS has been found to give excellent agreement

with experimental structures for various molecular crystals6

and for different sheet silicates.13 Furthermore, it was the best-

performing approach in terms of accurate lattice parameters in

our previous benchmarking study of neutral-framework zeo-

types, with PBE-D2 being a close second.24 On the other hand,

PBE-TS does not deliver satisfactory results for ionic solids,

and it has been shown that this shortcoming can be remedied

by replacing the standard Hirshfeld partitioning of the electron

density by an iterative Hirshfeld (HI) partitioning scheme.71

A combination of the TS scheme with the PBEsol func-

tional was introduced by Al-Saidi and co-workers.72 These

authors used the same method to determine sr as Tkatchenko

and Scheffler and arrived at an optimal value of 1.06. They

went on to compare the performance of PBEsol-TS to some

other dispersion-corrected DFT approaches for rare-gas crys-

tals, molecular crystals, and layered solids and observed a

reasonable prediction of lattice parameters (on par with PBE-

TS), but a pronounced underestimation of cohesive energies

by PBEsol-TS.

D. Assessment of errors

In order to quantify the agreement between DFT calcula-

tions and experiment, the error in a quantity x was calculated

as

errx = xDFT − xexp. (4)

In the benchmarking against experimental structure data,

errors in lattice parameters, T–O bond lengths, and T–O–T

angles were evaluated. For the study of relative stabilities,

xDFT =∆EDFT and xexp =∆Htrans. In order to obtain the overall

error (e.g., in lattice dimensions) from the individual errors

errx, the mean of signed errors (MSEs) was calculated as

MSE =
1

Ni

Ni
∑

i=1

errx,i. (5)

The mean of signed errors is very helpful to identify system-

atic over- or underestimations. On the other hand, even large

individual errors will compensate each other if they have dif-

ferent signs. Hence, the mean of absolute errors (MAEs) is a

useful complementary measure of the overall deviation,

MAE =
1

Ni

Ni
∑

i=1

��errx,i
�� . (6)
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For lattice parameters and energetics, relative deviations

were evaluated in addition to the absolute errors. Here, the root

mean square of relative errors (RMSEs) was calculated as

RMSE [%] =

√
√

√

1

Ni

Ni
∑

i=1

(

100 ·
errx,i

xexp,i

)2

. (7)

In the present study, the structural parameters of the DFT-

optimized structures were directly compared to experimental

values, which were—in most cases—obtained at room tem-

perature (RT). Since DFT delivers the equilibrium structure

at 0 K, certain differences in structural parameters have to

be expected: For example, the experimental lattice parameters

will be affected by thermal expansion. Since a complete correc-

tion for these effects is not possible due to the lack of available

experimental data, the initial benchmarking of DFT against

experiment will make use of the published crystal structures

without any corrections. Subsequently, it will be discussed how

the agreement in lattice parameters changes if low-temperature

(LT) data, rather than RT data, are used as a reference (these

are available for a few systems), and a correction of the

T–O bond lengths for thermal motion will be applied where

possible.

III. RESULTS AND DISCUSSION

A. Structural parameters of all-silica zeolites
and aluminophosphates

1. Lattice parameters

In our previous benchmarking study, the errors in lattice

parameters were evaluated separately for the SiO2 and AlPO4

systems of the set of reference structures.24 Since that work

showed that the observed trends in the errors are identical for

both groups, all systems were evaluated together in the present

study. This analysis delivers one overall value of MSE, MAE,

and RMSE for each functional. While the individual results

are given in the supplementary material, the resulting overall

errors, as well as the largest individual errors (both positive

and negative errors in absolute and relative terms), obtained

for PBEsol-D2 and PBEsol-TS are compiled in Table III.

For comparison, values for PBEsol and dispersion-corrected

FIG. 2. MSE (black) and MAE (grey) in lattice parameters obtained with

different DFT approaches.

versions of the PBE functional (PBE-D2 and PBE-TS) from

our previous work are also included. Figure 2 visualizes the

MSE and MAE for these five functionals. It has to be noted

that this analysis considers only the lattice dimensions a, b,

and c. For the monoclinic systems, the errors in the mon-

oclinic angles delivered by PBEsol-D2 and PBEsol-TS are

always small, not exceeding 0.2◦. As errors of this magnitude

are on the same scale as typical experimental uncertainties,

they can be considered insignificant in the context of the

present work.

The positive values of MSE indicate that all five func-

tionals tend to overestimate the lattice parameters. However,

while this tendency is pronounced for uncorrected PBEsol, the

inclusion of a dispersion correction term reduces it quite dras-

tically. With values of +0.025 Å and +0.018 Å, respectively,

the MSEs of PBEsol-D2 and PBEsol-TS are about 40% to 50%

smaller than that of PBE-TS, the best-performing approach of

our previous study. A similar reduction in the errors is found

in the values of MAE (which range close to 0.035 Å, 30%

to 40% smaller than that for PBE-TS) and of RMSE (which

are close to 0.3%, a reduction of roughly 30% with respect

to PBE-TS). Thus, all three quantities employed to assess

the overall error agree that the dispersion-corrected variants

TABLE III. Overall errors in lattice parameters obtained with PBEsol-D2 and PBEsol-TS functionals and com-

parison to selected previous results.24 The largest individual errors found among all systems are also given: LSE±

= largest signed positive/negative error; LRE± = largest relative positive/negative error.

PBEsol PBE-D2 PBEsol-D2 PBE-TS PBEsol-TS

MSE (Å) +0.073 +0.054 +0.025 +0.041 +0.018

MAE (Å) 0.074 0.066 0.036 0.052 0.032

LSE+ (Å)
+0.172 +0.265 +0.082 +0.169 +0.077

(b, TON) (a, AENAlPO) (a, TON) (a, AENAlPO) (a, ERIAlPO)

LSE� (Å)
�0.019 �0.119 �0.072 �0.093 �0.085

(b, IFR) (b, AENAlPO) (c, CHAAlPO) (b, AENAlPO) (c, CHAAlPO)

RMSE (%) 0.69 0.58 0.34 0.47 0.32

LRE+ (%)
+1.39 +1.47 +0.69 +1.09 +0.66

(c, TON) (a, AENAlPO) (c, SAS) (a, ERIAlPO) (c, SAS)

LRE� (%)
�0.14 �0.85 �0.48 �0.67 �0.57

(b, IFR) (b, AENAlPO) (c, CHAAlPO) (b, AENAlPO) (c, CHAAlPO)
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TABLE IV. Overall errors in T–O bond lengths obtained with PBEsol-D2 and

PBEsol-TS functionals and comparison to selected previous results.24 Largest

individual errors are also given.

Exp PBEsol PBE-D2 PBEsol-D2 PBE-TS PBEsol-TS

Si–O bonds

daver (Å) 1.601 1.609 1.615 1.608 1.614 1.608

MSE (Å) +0.008 +0.014 +0.007 +0.013 +0.007

MAE (Å) 0.010 0.015 0.010 0.014 0.010

LSE (Å) +0.032 +0.039 +0.031 +0.038 +0.031

Al–O bonds

daver (Å) 1.722 1.733 1.738 1.731 1.737 1.731

MSE (Å) +0.011 +0.016 +0.009 +0.015 +0.009

MAE (Å) 0.021 0.023 0.021 0.022 0.021

LSE (Å) +0.074 +0.083 +0.070 +0.082 +0.069

P–O bonds

daver (Å) 1.528 1.523 1.529 1.522 1.528 1.522

MSE (Å) −0.005 0.001 −0.006 0.000 −0.006

MAE (Å) 0.017 0.017 0.017 0.016 0.017

LSE (Å) −0.058 −0.055 −0.060 −0.056 −0.060

of PBEsol constitute a significant improvement over the per-

formance of the previously recommended PBE-TS. Among

the two approaches, PBEsol-TS is somewhat superior to

PBEsol-D2, a behavior that mirrors the better performance

of PBE-TS compared to PBE-D2.

In addition to the analysis of the overall errors, it is also

insightful to look at the largest individual errors, which are

included in Table III. First of all, it is worth noting that the

largest positive and negative deviations have a similar mag-

nitude (both in absolute and relative terms), corroborating

that PBEsol-D2 and PBEsol-TS exhibit a very “balanced”

behavior. Second, the largest individual errors are signifi-

cantly smaller than those for the dispersion-corrected variants

of PBE. Particularly remarkable differences are found for

AENAlPO, where both PBE-D2 and PBE-TS perform poorly,

overestimating the length of a and underestimating the length

of b. As discussed in the previous study, this is related to an

exaggerated distortion of an elliptically distorted eight-ring

window in this structure. In contrast, PBEsol-D2 and PBEsol-

TS do not show unusually large deviations for AENAlPO. Alto-

gether, the systematic reduction of the largest individual errors

confirms the superior performance of these functionals.

2. T–O bond lengths and T–O–T angles

The average Si–O, Al–O, and P–O bond lengths, the over-

all errors MSE and MAE, and the largest individual errors

LSE that were obtained with dispersion-corrected variants of

PBEsol are compiled in Table IV. As a first observation, it

can be noted that PBEsol-D2 and PBEsol-TS deliver prac-

tically identical results to PBEsol, since the inclusion of a

dispersion correction has virtually no impact on the equi-

librium distances between atoms that are directly bonded to

each other. Figure 3 shows histogram plots detailing the fre-

quency of occurrence of Si–O, Al–O, and P–O bond lengths

in the structures optimized with PBEsol-D2 in comparison

to the experimental distribution (T–O bond lengths obtained

with PBEsol-TS are not shown because the results are prac-

tically identical to those obtained with PBEsol-D2). Due to

its tendency to optimize all bonds of a given type towards

an equilibrium value, DFT delivers a much narrower distri-

bution of the bond lengths than experiment. A comparison of

the average bond lengths to experimental values points to a

systematic tendency to overestimate Si–O bond lengths (mod-

estly, by less than +0.010 Å) and Al–O bond lengths (more

prominently), whereas the P–O distances are somewhat under-

estimated. The overall deviations as measured by the mean of

absolute errors are significantly smaller for Si–O bond lengths,

with MAE around 0.010 Å, than for the other two types of

bonds, for which the values of MAE are closer to 0.020 Å.

However, as is clearly visible from Figure 3, the variation of

the experimental bond distances—which is likely to reflect, at

least partly, a limited quality of the data used in the structure

refinements—is also considerably larger for Al–O and P–O

bond lengths, and it is thus not surprising that the average

deviations are increased due to the larger scatter in experi-

mental bond lengths. The largest individual errors occur for

T–O distances that are unusually short in the case of Si–O

FIG. 3. Histogram of T–O bond distances found in experimental structures (grey, solid columns) and in structures optimized with PBEsol-D2 (semi-transparent

columns).
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TABLE V. Overall errors in T–O–T angles obtained with PBEsol-D2 and

PBEsol-TS functionals and comparison to selected previous results.24 Largest

individual errors are also given.

Expt. PBEsol PBE-D2 PBEsol-D2 PBE-TS PBEsol-TS

Si–O–Si angles

ωaver (deg) 149.86 150.36 148.17 149.23 148.07 149.01

MSE (deg) +0.50 −1.69 −0.63 −1.79 −0.85

MAE (deg) 1.49 2.62 1.85 2.46 1.98

LSE (deg) −5.43 −8.81 −5.75 −9.05 −5.98

Al–O–P angles

ωaver (deg) 147.48 148.83 147.31 147.82 146.82 147.74

MSE (deg) +1.35 −0.17 +0.34 −0.66 +0.26

MAE (deg) 2.68 2.45 2.16 2.60 2.17

LSE (deg) −7.10 7.45 −7.91 7.39 −7.86

and Al–O bonds (Si1-O1 in RTE, dexp = 1.577 Å, Al1-O2 in

AENAlPO, dexp = 1.650 Å) and unusually long in the case of

P–O bonds (P2-O11 in AENAlPO, dexp = 1.576 Å), in line with

the aforementioned tendencies of DFT to (a) overestimate

Si–O and Al–O distances and underestimate P–O distances

and (b) give a narrower bond length distribution. For Si–O and

Al–O bond lengths, all PBEsol-based approaches perform sig-

nificantly better than those based on PBE, which overestimate

the distances more strongly.

The average Si–O–Si and Al–O–P angles as well as MSE,

MAE, and the largest individual errors in these angles are

compiled in Table V. While PBEsol delivers on average some-

what larger Si–O–Si angles than observed experimentally, all

dispersion-corrected approaches have a tendency to under-

estimate these angles. Compared to PBE-D2 and PBE-TS,

this systematic deviation is reduced for the PBEsol-D2 and

PBEsol-TS, with values of MSE that are roughly half as large.

The MAE values are also smaller, but still substantial (in the

range of 2◦). A reduction of the mean of absolute errors is also

found when moving from the PBE-based to the PBEsol-based

approaches for the Al–O–P angles; in this case, however, there

is no evidence for a systematic overestimation of the angles

(MSE close to zero).

3. Influence of temperature on the structural
parameters—A partial assessment

In the analysis presented in Secs. III A 1 and III A 2,

experimental crystal structures were taken as reference data

without further corrections. We have to note, however, that

these structures were mostly determined at room temperature

(except for IFR (ITQ-4),37 TON (ZSM-22),41 and AlPO-34

(CHA),44 for which the structures were obtained at lower tem-

peratures), whereas the DFT-optimized structures correspond

to the equilibrium structure at absolute zero. On the one hand,

there should thus be a certain difference in lattice parame-

ters due to (positive or negative) thermal expansion. On the

other hand, it has been shown that thermal vibrations lead

to a shortening of the “apparent” (experimentally observed)

T–O bond distances in tetrahedral frameworks.73 It could now

be speculated that the excellent performance of PBEsol-D2

and PBEsol-TS found above is, at least in part, an artifact of

comparing the DFT-optimized structures to experimental RT

data. While the available experimental data do not allow for a

complete assessment of these effects, a partial analysis for

selected systems is presented here.

Regarding the influence on the lattice parameters, such a

partial assessment can be made by considering those systems

where the low-temperature thermal expansion has been stud-

ied experimentally. Such measurements have been performed

for all-silica zeolites with topologies FAU,74 IFR (ITQ-4),37

and LTA (ITQ-29),75 as well as AlPO-34 (CHAAlPO)44 and

AlPO-17 (ERIAlPO),45 all of which exhibit negative thermal

expansion (NTE), whereas a qualitative change in thermal

expansion upon heating has been observed for all-silica FER

(positive thermal expansion up to 400 K, NTE above that

temperature).76 For these six systems, the lattice parameters

measured at RT and at lower temperatures (between 18 and

150 K) are supplied in the supplementary material (Table 10),

together with the DFT-optimized lattice parameters obtained

with PBEsol-D2 and PBEsol-TS. The differences between RT

and LT lattice parameters range from less than 0.02 Å to

around 0.06 Å (reaching up to 0.5% in relative terms). A com-

parison with the DFT results shows that the DFT-optimized

lattice parameters are in better agreement with the LT data

in many instances, most markedly for a in IFR and ERIAlPO,

systems that show pronounced negative thermal expansion in

this direction. While the opposite trend is also observed in a

number of cases, a calculation of the MSE and MAE for this

subset of structures delivers significantly smaller values when

the LT lattice parameters are used as a reference (Table VI).

This observation corroborates that the good performance of

dispersion-corrected PBEsol is not an artifact of the use of RT

structures as reference data. On the contrary, the agreement

between DFT and experiment should become even better if

high-quality LT data were available for all frameworks.

In framework silicates, thermal vibrations lead to cor-

related motions of SiO4 tetrahedra with much larger ampli-

tudes of vibration than the bond-stretching vibrations. As a

consequence, the average positions of the oxygen atoms at

finite temperature, as measured by diffraction experiments,

are closer to the silicon atoms than the true equilibrium posi-

tion (Figure 4). This leads to a contraction of the “apparent”

Si–O bond lengths,73,77 which becomes more pronounced with

increasing temperature as the librational motion of the tetra-

hedra increases: For example, the experimentally observed,

uncorrected Si–O bond distances in albite decrease from

1.603 Å at cryogenic temperatures to 1.595 Å at 1200 K.73

However, a correction using the TLS model (accounting for

translational, librational, and screw modes) delivers bond

lengths that increase from 1.605 Å to 1.627 Å across this range

of temperatures. Thus, the effect of the correlated motion on the

TABLE VI. MSE and MAE in lattice parameters calculated for a set of six

frameworks for which lattice parameters obtained at different temperatures

are available, using either room-temperature (RT) or low-temperature (LT)

experimental data as a reference.

PBEsol-D2 PBEsol-TS

MSE (RT) (Å) +0.033 +0.026

MSE (LT) (Å) +0.018 +0.011

MAE (RT) (Å) 0.043 0.040

MAE (LT) (Å) 0.035 0.031
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FIG. 4. Visualization of the difference between true and “apparent” bond

lengths: The dominant motion of the TO4 tetrahedron is a rotation around its

center. The oxygen atom therefore traverses an arc in space (blue arrow). The

time-averaged position of the oxygen atom (dashed circle), which is deter-

mined by diffraction, lies closer to the Si atom than its true position at any

point in time. Therefore, the experimentally measured distance dexp is shorter

than the true distance d.73,77 For clarity, the diagram shows only a single T–O

bond, rather than a T–O–T linkage (also see Figure 5 of Ref. 73).

“apparent” bond lengths is so large that it masks the thermal

expansion of the Si–O bonds entirely. While the magnitude

of the correction is relatively modest for RT structures (see

below), the experimental bond lengths should be corrected in

order to make them directly comparable to the DFT results.

Since the full TLS correction requires elaborate calculations,

a simpler formula to correct the “apparent” T–O bond lengths

for the effects of thermal motion was proposed by Downs

et al.73 In this “Simple Rigid Body” (SRB) correction, a term is

added to the uncorrected bond length, the magnitude of which

depends on the difference between the isotropic displacement

parameters Biso of the atoms participating in the bond. It was

shown in the original work for a set of silicates that the SRB

correction formula gives results that are in good agreement

with the more elaborate TLS correction.

When testing the applicability of the SRB correction for

our set of reference structures, it was found that reasonably

meaningful correction terms were obtained for no more than

six of the 14 systems due to insufficient data quality. In the

other eight cases, either one global value of Biso was given

for all atoms in the structure (leading to an SRB correction

of zero) or the scatter in the Biso values was so large that

Biso(T)> Biso(O) for some combinations of atoms, rendering

the SRB correction meaningless. For the remaining six sys-

tems, individual values of Biso for all non-equivalent atoms

were available in four cases (α-quartz, α-berlinite, FAU, and

FER), whereas only element-specific displacement parameters

were given in the cases of RTE and AENAlPO.

The average uncorrected and SRB-corrected T–O bond

lengths are compiled in Table VII (individual results are given

in the supplementary material). For the dense systems, α-

quartz and α-berlinite, the changes in the average bond lengths

due to the SRB correction are virtually identical, amounting

to +0.006 Å. For the zeotypes, the increase in the average

bond lengths is usually larger, reaching up to +0.016 Å for

the Al–O bonds in AENAlPO. The only exception is RTE, for

which a very small correction of +0.002 Å is found. In the

view of the rather large scatter of the SRB corrections for the

porous frameworks, the main conclusion that we can draw at

this stage is that a correction for temperature effects will lead

to an increase in the experimental bond length that is likely

TABLE VII. Average “apparent” T–O bond lengths dexp and SRB-corrected

bond lengths dexp ,SRB, calculated for those systems where sufficient data to

apply the SRB correction are available. The last column gives the difference

∆d between the two values.

dexp (Å) dexp ,SRB (Å) ∆d (Å)

Si–O bonds

α-quartz 1.609 1.615 0.006

FAU 1.606 1.615 0.009

FER 1.595 1.610 0.015

RTE 1.601 1.603 0.002

Al–O bonds

α-berlinite 1.734 1.740 0.006

AENAlPO 1.717 1.733 0.016

P–O bonds

α-berlinite 1.526 1.532 0.006

AENAlPO 1.534 1.543 0.009

to be—on average—somewhat larger than that for the dense

phases. As we have seen above, DFT calculations with PBEsol

(with or without dispersion correction) deliver Si–O and Al–O

bond lengths that are larger than the uncorrected experimental

values, with MSEs of approximately +0.007 Å and +0.010 Å,

respectively (Table IV). We can thus anticipate that the overall

agreement between DFT and experiment should become better

if sufficient data were available to apply the SRB correction

to all Si–O and Al–O bond lengths. On the other hand, the

P–O bond distances are already underestimated by the calcu-

lations (MSE of �0.006 Å), and a correction for temperature

effects would make matters worse. We can only speculate that

this may be due to an overestimation of the covalent character

of the P–O bond in the DFT calculations. In any case, it is

an issue that should be addressed in future work. As a final

remark, it has to be reiterated that the analysis presented here

is necessarily a preliminary one, mainly due to the lack of

structures with sufficiently accurate displacement parameters

in the reference set. A complete assessment of the effects of

temperature on bond lengths in neutral-framework zeotypes

would require new diffraction measurements on high-quality

samples to allow anisotropic displacement parameters to be

determined for every independent atom.

4. Strongly distorted structures

In our previous benchmarking study,24 we observed a

qualitatively different behavior of GGA functionals with and

without dispersion correction in the description of two all-

silica zeolites with strongly distorted six-ring windows, all-

silica SOD and AST: While the functionals without dispersion

correction gave less distorted structures compared to experi-

ment, the dispersion-corrected variants overestimated the dis-

tortion. The errors in the lattice parameters reached up to six

per cent, which is why these “outliers” were not included in the

set of reference structures. In the context of the present work,

optimizations with the PBEsol-D2 and PBEsol-TS functional

were performed for all-silica SOD and AST. The resulting lat-

tice parameters and T–O–T angles are given in Table VIII. The

dispersion-corrected variants of PBEsol behave qualitatively

identical to PBE-D2 and PBE-TS, underestimating c and both
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TABLE VIII. Selected results obtained for systems with strongly distorted six-rings, all-silica SOD and AST.

Some results from previous work are given for comparison.24

Expt. PBEsol PBE-D2 PBEsol-D2 PBE-TS PBEsol-TS

SOD a (Å) 12.441 12.597 12.442 12.429 12.410 12.406

errrel (%) 1.3 0.0 �0.1 �0.2 �0.3

c (Å) 7.091 7.411 6.915 6.984 6.898 6.934

errrel (%) 4.5 �2.5 �1.5 �2.7 �2.2

ω(Si1−O1−Si1) (deg) 149.02 155.90 145.73 147.13 144.40 146.25

ω(Si1−O2−Si1) (deg) 145.93 150.64 141.74 143.46 142.49 142.70

AST a (Å) 9.255 9.387 9.115 9.127 9.066 9.095

errrel (%) 1.4 �1.5 �1.4 �2.0 �1.7

c (Å) 13.501 13.556 13.739 13.660 13.757 13.673

errrel (%) 0.4 1.8 1.2 1.9 1.3

ω(Si1−O1−Si1) (deg) 147.22 147.65 149.74 149.33 150.03 149.52

ω(Si1−O2−Si1) (deg) 146.54 147.50 143.03 143.75 142.18 143.30

ω(Si1−O3−Si2) (deg) 151.74 156.23 145.89 147.25 144.93 146.40

T–O–T angles in the case of SOD, and overestimating a while

underestimating c and two of the three T–O–T angles for AST.

However, the magnitude of the errors is slightly reduced for

PBEsol-D2 and PBEsol-TS. As discussed in detail in the con-

text of our previous study (especially Figure 8 of Ref. 24), the

observed deviations are directly linked to an exaggeration of

the distortion of irregular six-ring windows in these structures.

We explained this behavior with an overestimation of disper-

sion interactions between atoms that are close together, but

not directly linked to each other, e.g., between oxygen atoms

on both sides of the distorted window. Since the predicted

over-stabilization of the distortion persists when changing the

exchange-correlation functional, it appears that this may be

a systematic shortcoming of pairwise dispersion correction

schemes.

B. Relative stability of all-silica zeolites

First of all, we briefly assess the agreement of the DFT-

optimized lattice parameters with experimental data for those

all-silica systems from the reference set for energetics that

have not been covered in Secs. III A 1–III A 4 (all systems

from the right-hand side of Figure 1 except AST). These lat-

tice parameters, as well as the individual relative deviations

in per cent, are compiled in Table 13 of the supplementary

material. We observe excellent agreement for 5 out of 12

systems (AFI, BEA, ITE, MFI, and MTW), with all relative

deviations in lattice parameters being no larger than 0.5%.

Agreement is good to fair for another 6 systems (α-cristobalite,

CFI, ISV, MEL, MWW, and STT), where relative deviations

in at least one individual parameter are larger than 0.5% but do

not (significantly) exceed 1.0%. The largest relative errors are

found for MEI (ZSM-18), where the length of c is underes-

timated by approximately �1.4%, and a is also moderately

shorter than in the experimental structure (by �0.6%). For

this system, it has to be noted that the only available exper-

imental lattice parameters were obtained for a sample that

contained a significant amount of framework Al atoms and

charge-balancing cations.55 This renders a comparison to the

all-silica model used in the computations problematic. If the

results for MEI are excluded, a calculation of the overall errors

(omitting monoclinic angles) delivers MSE values of +0.037 Å

(PBEsol-D2) and +0.023 Å (PBEsol-TS), MAE values of

0.050 Å (PBEsol-D2) and 0.054 Å (PBEsol-TS), and RMSE

values of 0.43% (PBEsol-D2) and 0.46% (PBEsol-TS).

Having thus corroborated our previous conclusion that

dispersion-corrected variants of PBEsol predict the lattice

parameters of all-silica frameworks with high accuracy, we

now turn our attention to the prediction of the relative

energies (with respect to α-quartz). The left-hand side of

Figure 5 shows ∆EDFT as a function of the framework

density FD for all systems from the reference set for ener-

getics (16 all-silica zeolites and α-cristobalite, see Figure 1)

for PBEsol-D2 and PBEsol-TS. A trendline representing the

correlation between FD and the experimental enthalpies of

transition ∆Htrans is also shown. Qualitatively, both function-

als reproduce the experimental trend. However, the PBEsol-TS

functional tends to overestimate the relative energy for a given

framework density, whereas the PBEsol-D2 data points fall

much closer to the trendline.

The good performance of PBEsol-D2 and the system-

atic overestimation of the relative energies by PBEsol-TS are

also evident when plotting ∆EDFT against the experimental

values of ∆Htrans (Figure 5, right). To enable a quantitative

assessment, the overall errors MSE, MAE, and RMSE were

calculated. These are compiled in Table IX. For PBEsol-D2,

the small MSE of +0.75 kJ mol�1 together with the simi-

lar (absolute) magnitude of the largest positive and negative

individual errors corroborates the absence of a significant sys-

tematic error. With 1.1 kJ mol�1, the mean of absolute errors is

in the same range as the typical uncertainty in the experimen-

tal enthalpies of transition of approximately 1 kJ mol�1.31 The

systematic overestimation of the relative energies by PBEsol-

TS manifests in a much larger MSE of +2.5 kJ mol�1 and

in MSE and MAE values of almost equal magnitude. Conse-

quently, the RMSE of PBEsol-TS is also much larger (33%)

than that of PBEsol-D2 (17%). Since both approaches use the

same exchange-correlation functional, it is obvious that their

significantly different performance for the relative energies

can only be attributed to the influence of the dispersion cor-

rection scheme. Apparently, the TS dispersion correction in its
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FIG. 5. Left: Correlation between

framework density FD and relative

energy ∆EDFT as obtained from

calculations with PBEsol-D2 (open

diamonds) and PBEsol-TS (grey dia-

monds). The dashed line corresponds to

the correlation between FD and ∆Htrans

calculated on the basis of experimental

data from Ref. 31. Right: Plot of relative

energy ∆EDFT against experimental

enthalpy of transition ∆Htrans for

PBEsol-D2 (open diamonds) and

PBEsol-TS (grey diamonds). Results

from a previous computational study

employing the PBE0-D2 functional are

included for comparison (crosses).23

implementation optimized for PBEsol overestimates the long-

range dispersion interactions, leading to an overstabilization

of the dense phases and thus a larger range of ∆EDFT values.

The same observation was made when comparing the relative

energies obtained with PBE-D2 and PBE-TS for a subset of

all-silica zeolites in our previous work.24 We will return to this

aspect in Sec. III C.

The right-hand side of Figure 5 also contains the PBE0-

D2 results from the previous DFT study by Román-Román

and Zicovich-Wilson, in which the relative energies were

calculated for 14 all-silica zeolites (BEA, MEI, and α-

cristobalite were not considered in that work).23 While the indi-

vidual results differ considerably in some instances, PBE0-D2

and PBEsol-TS are similar in their tendency to overestimate

the relative energies systematically. This is also reflected in the

very similar overall errors, which are included in Table IX. Fur-

thermore, PBE0-D2 overestimates the unit cell volumes much

more significantly than either of the PBEsol-based approaches.

These are quite interesting findings, as the rather accurate

prediction of structural parameters and relative energies by

PBEsol (or PBE) in conjunction with the D2 dispersion cor-

rection is deteriorated when a pure-GGA functional is replaced

by a more elaborate hybrid functional (which, as mentioned

above, sits on a higher rung of “Jacob’s Ladder”). Although

TABLE IX. Overall errors in relative energies obtained with PBEsol-D2 and

PBEsol-TS functionals and comparison to PBE0-D2.23 The largest individ-

ual errors found among all systems are also given: LSE± = largest signed

positive/negative error; LRE± = largest relative positive/negative error.

PBEsol-D2 PBEsol-TS PBE0-D2

MSE (kJ mol�1) +0.69 +2.35 +2.59

MAE (kJ mol�1) 1.08 2.42 2.60

LSE+ (kJ mol�1)
+2.20 +3.91 +4.40

(FER) (STT) (AFI)

LSE� (kJ mol�1)
�1.93 �0.61 �0.10

(MTW) (MTW) (ISV)

RMSE (%) 15.4 30.9 34.7

LRE+ (%)
+33.4 +57.2 +65.2

(FER) (FER) (FER)

LRE� (%)
�22.2 �7.0 �0.7

(MTW) (MTW) (ISV)

we cannot trace the origin of this behavior in the context of the

present study, it could indicate that the excellent performance

of PBEsol-D2 is, to some extent, the result of a fortuitous

cancellation of errors.

C. Additional aspects: The role of the scaling factor
and extension to charged-framework compounds

Having assessed the performance of PBEsol-D2 and

PBEsol-TS in detail, it is useful to consider two additional

points. The first one concerns the influence of the scaling fac-

tor used in the dispersion correction scheme. As described

above, the scaling factors sr of PBEsol-D2 and PBEsol-TS

were determined by minimising the error with respect to high-

level CCSD(T) reference data for the S22 benchmark set of

organic dimers. Clearly, it is not advisable to redetermine the

scaling factor on the purely empirical basis of a comparison to

experimental data. Nevertheless, it might be useful to assess

how the agreement in structural parameters and relative ener-

gies changes when the scaling factor is modified. Additional

calculations for a subset of structures using the PBEsol-TS

functional with varying values of sr showed that the best agree-

ment in lattice parameters is observed when the scaling factor

is slightly reduced (to sr = 1.02). However, this leads to even

larger deviations in the relative energies, for which a larger

scaling factor in the range of 1.15 would lead to an optimal

agreement. Thus, it is apparent that no simple adjustment in

either direction affords perfect agreement for both structures

and energetics simultaneously. In this context, it is worth not-

ing that previous studies found a pronounced overestimation of

the cohesive energies by the TS scheme for ionic compounds,

which was explained with a tendency of the Hirshfeld partition-

ing scheme to deliver too large C6 coefficients for cations.71 It

was shown that a replacement of the original Hirshfeld method

by an iterative Hirshfeld (HI) partitioning of the DFT elec-

tron density greatly improves the performance for ionic solids.

Since the Si–O bond can be best described as having an inter-

mediate character between the ionic and covalent limits,78 it is

not surprising that the TS scheme also exaggerates the contri-

bution of dispersion interactions in purely siliceous materials,

resulting in the systematic overestimation of relative energies

observed above. Altogether, it appears likely that switching to

the TS/HI approach, rather than modifying the scaling factor
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sr , would be a more promising strategy to improve the accuracy

of PBEsol-TS for relative energies.

Second, a comment should be made regarding the trans-

ferability of the findings of present work to charged-framework

compounds, as most zeolites that are relevant to applications

consist of a negatively charged framework whose charge is

balanced by protons or extra-framework cations. As we have

seen above, the TS dispersion correction scheme has some

problems for ionic solids due to the overestimation of the

C6 coefficients for cations. Since the D2 scheme uses only

a single set of dispersion coefficients, which were derived

for neutral atoms, its application for charged-framework com-

pounds is also likely to be problematic. For example, several

studies have shown that a combination of the PBE functional

with the D2 dispersion correction systematically overesti-

mates the interaction energies of small molecules with cationic

zeolites.79–81 Additional complications are likely to arise for

zeolites exchanged with transition metal cations, which are

used in many catalytic applications. Here, it has been shown

that GGA-type functionals do not provide an accurate descrip-

tion of the electronic structure and that the—computationally

more demanding—hybrid functionals are a better choice.82

On the basis of these known issues, it can be anticipated

that both PBEsol-D2 and PBEsol-TS will not perform as well

for charged-framework zeolites as for their neutral-framework

counterparts. While future benchmarking studies addressing

charged-framework compounds could draw from a rich body

of experimental structure data for ordered, dense materials

(like feldspars and other silicate minerals), the extension to

aluminosilicate zeolites is hampered by the frequent occur-

rence of mixed T site occupancies and cation disorder in

these materials. Although new approaches to generate ordered

structure models from disordered experimental structures may

prove very useful in this respect,83,84 the necessity to con-

sider a sufficiently large set of different, representative struc-

ture models would significantly increase the computational

cost.

IV. CONCLUSIONS

From the benchmarking against experimental structure

data, we can conclude that both PBEsol-D2 and PBEsol-TS

combine an excellent prediction of the lattice parameters—

improving over the performance of PBE-TS, the best func-

tional found in our previous study—with a reasonably accurate

prediction of T–O bond distances and T–O–T angles, for which

they perform much better than all PBE-based approaches and

are on par with the uncorrected PBEsol functional. Among

the two, PBEsol-TS is slightly better for lattice parameters,

whereas there is no appreciable difference for bond lengths

and angles.

Since the DFT-optimized structures were compared to

experimental data that was—in most cases—obtained at room

temperature, it could be argued that the agreement is to some

extent fortuitous because errors in the DFT approach might

compensate for the effect of temperature on lattice parameters

and bond distances. To rule out this possibility, the struc-

tural parameters obtained from DFT were also compared to

low-temperature lattice parameters and to T–O bond lengths

that were corrected for temperature effects using a simple

rigid bond model. While this analysis could only be per-

formed for a subset of structures due to the lack of available

experimental data, it was clear that the overall agreement

between DFT and experiment improved if temperature effects

were accounted for. This corroborates the suitability of

PBEsol-D2 and PBEsol-TS to give accurate 0 K structures.

In order to expand on the present findings, calculations should

be combined with low-temperature diffraction experiments on

high-quality calcined samples, e.g., using neutron radiation.

In the view of recent developments to predict the thermal

expansion from DFT calculations,85,86 it might be particu-

larly rewarding to address the negative thermal expansion

that is often observed in neutral-framework zeotypes with a

combination of computations and experiments.

A thorough comparison of the relative energies derived

from the dispersion-corrected DFT calculations to experi-

mentally available enthalpies of transition delivered excellent

agreement for the PBEsol-D2 functional, whereas PBEsol-TS

showed a systematic tendency to overestimate the relative ener-

gies. Since the calculations considered a fairly large number of

all-silica zeolites, which extend across a range of framework

densities from 13 to 20 T atoms per 1000 Å3, it can be stated

with confidence that PBEsol-D2 will also be suitable for pre-

dictive purposes. Notably, it performs better than the PBE0-D2

functional used in a previous study23 and similarly well as a

recent force field that was developed specifically for the pre-

diction of the structure, energetics, and vibrational properties

of all-silica zeolites.87 It would be a logical next step to extend

the prediction of relative energies to aluminophosphates. How-

ever, the few experimental datapoints that are available show

no correlation between the enthalpy of transition and frame-

work density, in contrast to the well-established relationships

for all-silica zeolites.31 This counterintuitive behavior can pos-

sibly be attributed to the presence of small amounts of water

in the samples; however, it appears that this issue has not yet

been fully resolved. At present, we consider the experimental

data to be insufficiently reliable to serve as a benchmark for

the calculations.

The excellent prediction of relative energies by PBEsol-

D2 is somewhat surprising when it is considered that the D2

approach uses a fixed set of C6 coefficients derived for neutral

atoms, thus not accounting for the partly ionic character of

the Si–O bond. While the good performance across the board

of systems studied gives confidence in the robustness of the

approach, it is likely that PBEsol-D2 benefits to some extent

from a cancellation of errors. In any case, the present results

may serve as a benchmark for the performance of relatively

low-level DFT methods, GGA functionals with an empirical

pairwise dispersion correction term, against which the possible

improvements that can be gained from using more evolved

approaches can be measured.

SUPPLEMENTARY MATERIAL

See supplementary material for additional tables reporting

results for individual systems, further technical information

on the DFT calculations, and CIF files of all DFT-optimised

structures.
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82F. Göltl and J. Hafner, J. Chem. Phys. 136, 064503 (2012).
83M. Soeken, R. Drechsler, and R. X. Fischer, Z. Kristallogr. - Cryst. Mater.

231, 107 (2016).
84K. Okhotnikov, T. Charpentier, and S. Cadars, J. Cheminf. 8, 17 (2016).
85A. Erba, J. Chem. Phys. 141, 124115 (2014).
86J. George, V. L. Deringer, A. Wang, P. Müller, U. Englert, and

R. Dronskowski, J. Chem. Phys. 145, 234512 (2016).
87Y. G. Bushuev and G. Sastre, Microporous Mesoporous Mater. 129, 42

(2010).


